第二部分 实验

实验一 三相异步电动机点动控制和自锁控制

一、实验目的

1. 通过对三相异步电动机点动控制和自锁控制线路的实际安装
 接线,掌握由电气原理图变换成安装接线图的知识;

 通过实验进一步加深理解点动控制和自锁控制的特点以及在 机床控制中的应用。

二、实验原理

1.继电接触控制在各类生产机械中获得广泛的应用,交流电动机继电接触控制电路的主要设备是交流接触器,其主要构造为:

(1) 电磁系统—铁心、吸引线圈和短路环;

(2) 触头系统—主触头和辅助触头,还可按吸引线圈得电前后 触头的动作状态,分动合(常开)、动断(常闭)两类;

(3) 消弧系统—在切断大电流的触头上装有灭弧罩以迅速切断 电弧;

(4) 接线端子,反作用弹簧等。

 在控制回路中常采用接触器的辅助触头来实现自锁和互锁 控制。要求接触器线圈得电后能自动保持动作后的状态,这就是自 锁,通常用接触器自身的动合触头与起动按钮相并联来实现,以达 到电动机的长期运行,这一动合触头称为"自锁触头"。使两个电 器不能同时得电动作的控制,称为互锁控制,如为了避免正、反转 两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制 环节。为操作的方便,也为防止因接触器主触头长期大电流的烧蚀 而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转 控制的线路中采用既有接触器的动断辅助触头的电气互锁,又有复 合按钮机械互锁的双重互锁的控制环节。

 2. 控制按钮通常用以短时通、断小电流的控制回路,以实现 近、远距离控制电动机等执行部件的起、停或正、反转控制。按钮 是专供人工操作使用。对于复合按钮,其触点的动作规律是:当按 下时,其动断触头先断,动合触头后合;当松手时,则动合触头先 断,动断触头后合。

4. 在电动机运行过程中,应对可能出现的故障进行保护。采 用熔断器作短路保护,当电动机或电器发生短路时,及时熔断熔体, 达到保护线路、保护电源的目的。熔体熔断时间与流过的电流关系 称为熔断器的保护特性,这是选择熔体的主要依据。

采用热继电器实现过载保护,使电动机免受长期过载之危害。 其主要的技术指标是整定电流值,即电流超过此值的20%时,其动 断触头应能在一定时间内断开,切断控制回路,动作后只能由人工 进行复位。 5. 在电气控制线路中,最常见的故障发生在接触器上。接触器线圈的电压等级通常有220V和380V等,使用时必须认清,切勿疏忽,否则,电压过高易烧坏线圈,电压过低,吸力不够,不易吸合或吸合频繁,这不但会产生很大的噪声,也因磁路气隙增大,致使电流过大,也易烧坏线圈。此外,在接触器铁心的部分端面嵌装有短路铜环,其作用是为了使铁心吸合牢靠,消除颤动与噪声,若发现短路环脱落或断裂现象,接触器将会产生很大的振动与噪声。

三、实验设备

序号	名称	数量
1	DT01电源主控制屏	1
2	三相鼠笼式异步电动机(D21)	1
3	D61继电接触控制挂箱	1
4	交流电压表	1

四、实验内容

认识各电器的结构、图形符号、接线方法;抄录电动机及各电器铭牌数据;并在断电状态下用万用电表检查各电器线圈、触头是否完好。

三相鼠笼异步机接成△接法(线电压为220V);实验线路电 源端接三相电源U、V、W。

1. 点动控制

按图2-1点动控制线路进行安装接线,接线时先接主电路,即

从三相交流电源的输出端 U、

V、W开始,经接触器KM1 的主触头,热继电器FR的热元 件到电动机M的三个线端A、B、 C,用导线按顺序串联起来。主 电路连接完整无误后,再连接控 制电路,即从三相交流电源某输 出端(如V)开始,经过常开按钮 SB1、接触器KM1的线圈、热继 电器FR的常闭触头到三相交流电源 的W端(**线电压为220V**)。

图2-1 点动控制实验图

接好线路,经检查无误后,方可进行通电操作。

(1) 开启控制屏电源总开关;

(2) 按起动按钮SB1, 对电动机M进行点动操作,比较按下SB1 与松开SB1电动机和接触器的运行情况;

(3) 实验完毕,按控制屏停止按钮,切断实验线路三相交流电源。

2. 自锁控制电路

按图2-2所示自锁线 路进行接线,它与图2-1 的不同点在于控制电路中 多串联一只常闭按钮 SB2,同时在SB1上并联1 只接触器KM1的常开触 头,它起自锁作用。

(1) 按控制屏启动按

钮,接通三相交流电源;

图2-2 自锁控制实验图

(2) 按起动按钮SB1, 松手后观察电动机M是否继续运转;

(3) 按停止按钮SB2, 松手后观察电动机M是否停止运转;

(4) 按控制屏停止按钮, 切断实验线路三相电源, 拆除控制回路中自锁触头KM1, 再接通三相电源, 启动电动机, 观察电动机及接触器的运转情况。从而验证自锁触头的作用。

实验完毕,按控制屏停止按钮,切断实验线路的三相交流电源。

3. 异步电机点动和自锁控制线路

图2-3 既可点动又可自锁控制线路

按图2-3所示既可点动又可自锁线路进行接线。操作步骤为:

- (1)合上 Q1 接通三相交流 220V 电源;
- (2) 按下启动按钮 SB2, 松手后观察电机 M 是否继续运转;
- (3) 运转半分钟后按下 SB3, 然后松开, 电机 M 是否停转; 连续按下和松开 SB3, 观察此时属于什么控制状态;
- (4) 按下停止按钮SB1, 松手后观察M是否停转。

五、实验注意事项

1. 接线时合理安排挂箱位置,接线要求牢靠、整齐、安全可

操作时要胆大、心细、谨慎,不许用手触及各电器元件的
 导电部分及电动机的转动部分,以免触电及意外损伤;

通电观察继电器动作时要注意安全,防止碰触带电部位。
 六、思考题

1. 试比较点动控制线路与自锁控制线路从结构上主要有什么
 区别?从功能上看主要区别是什么?

2. 交流接触器线圈的额定电压为220V,若误接到380V电源上 会产生什么后果? 反之若接触器线圈电压为380V,而电源线电压 为220V,其结果又如何?

 在主回路中,熔断器和热继电器热元件可否少用一只或两只?熔断器和热继电器两者可否只采用其中一种就可起到短路和 过载保护作用?为什么?

4. 图中各个电器如 Q1、FU、KM1、FR、SB1、SB2、SB3 各起什么作用?已经使用了熔断器为何还要用热继电器?已经有了 开关 Q1 为何还要使用接触器 KM1?

5. 图 2-2 电路能否对电动机实现过流、短路、欠压和失压保护?

6. 画出图 2-1、2-2、2-3 的工作原理流程图。

实验二 三相异步电机联锁正反转控制

一、实验目的

掌握三相异步电动机正反转的原理和方法,加深对电气控制系统各种保护、自锁、互锁等环节的理解;

 掌握接触器联锁正反转、按钮联锁正反转控制线路的不同 接法,并熟悉在操作过程中有哪些不同之处;

 通过对三相鼠笼式异步电动机延时正反转控制线路的安装 接线,掌握由电气原理图接成实际操作电路的方法。

4、学会分析、排除继电--接触控制线路故障的方法

二、原理说明

在三相鼠笼异步电机正反转控制线路中,通过相序的更换来改 变电动机的旋转方向。本实验给出三种不同的正、反转控制线路, 具有如下特点:

1. 电气互锁

为了避免接触器KM1(正转)、KM2(反转)同时得电吸合造 成三相电源短路,在KM1(KM2)线圈支路中串接有KM1(KM2) 动断触头,它们保证了线路工作时KM1、KM2不会同时得电(如图 2-4),以达到电气互锁目的。

2. 按钮联锁正反转控制

除电气互锁外,可再采用复合按钮SB1与SB2组成的机械互锁 环节(如图2-5),以求线路工作更加可靠。

3. 电气和机械双重互锁

除电气互锁外,可再采用复合按钮SB1与SB2组成的机械互锁环节(如图2-6),以求线路工作更加可靠。

4. 延时正反转控制控制

三相鼠笼式异步电动机可通过电子式时间继电器实现延时正 反转控制(如图**2-7**)。

5. 线路具有短路、过载、失、欠压保护等功能。

三、实验设备

序号	名称	数量
1	DT01电源主控制屏	1
2	三相鼠笼式异步电动机(D21)	1
3	D61继电接触控制挂箱	1
4	交流电压表	1

四、实验内容

三相鼠笼异步电动机接成△接法(线电压为220V,可接交流 电压表监视)。

1. 接触器联锁的正反转控制线路

按图 2-4 接线, 经检查无误后, 方可进行通电操作。

图 2-4 接触器联锁正反转控制实验图

实验操作步骤:

- (1) 开启控制屏电源总开关,打开电源;
- (2) 按正向起动按钮 SB1, 观察电机转向和接触器运行情况;
- (3) 按反向起动按钮 SB2, 观察电动机和接触器的运行情况;
- (4) 按停止按钮 SB3, 观察电动机的转向和接触器运行情况;

(5) 再按 SB2, 观察电动机的转向和接触器自锁和联锁触点的 吸断情况;

(6) 实验完毕,按控制屏停止按钮,切断三相交流电源。

图 2-5 按钮联锁的正反转控制线路

2. 按钮联锁的正反转控制线路

按图 2-5 接线,实验操作步骤如下:

- (1) 按控制屏启动按钮,接通三相交流电源;
- (2) 按正向起动按钮 SB1, 电动机正向起动, 观察电动机的转

向及接触器的动作情况。按停止按钮 SB3, 使电动机停转;

(3) 按反向起动按钮 SB2, 电动机反向起动, 观察电动机的转向及接触器的动作情况。按停止按钮 SB3, 使电动机停转。

实验完毕,按控制屏停止按钮,切断实验线路电源。

2. 接触器和按钮双重联锁的正反转控制线路

按图 2-6 接线, 经检查无误后, 方可进行通电操作。实验操作步骤如下:

图 2-6 接触器和按钮双重联锁的正反转控制线路

(1) 按控制屏启动按钮,接通三相交流电源。

(2) 按正向起动按钮 SB1,电动机正向起动,观察电动机的转向及接触器的动作情况。按停止按钮 SB3,使电动机停转。

(3) 按反向起动按钮 SB2, 电动机反向起动,观察电动机的转向及接触器的动作情况。按停止按钮 SB3, 使电动机停转。

(4)按正向(或反向)起动按钮,电动机起动后,再去按反向(或正向)起动按钮,观察有何情况发生?

(5) 电动机停稳后,同时按正、反向两只起动按钮,观察有何 情况发生?

(6) 失压与欠压保护

按起动按钮 SB1(或 SB2)电动机起动后,按控制屏停止按钮, 断开实验线路三相电源,模拟电动机失压(或零压)状态,观察电动 机与接触器的动作情况,随后,再按控制屏上启动按钮,接通三相 电源,但不按 SB1(或 SB2),观察电动机能否自行起动?

实验完毕,按控制屏停止按钮,切断实验线路电源。

3. 三相异步电机带延时正反转控制

按图 2-7 接线,实验操作步骤如下:

图 2-7 三相异步电机带延时正反转控制线路

(1) 开启控制屏电源总开关;

(2) 设置好时间继电器计数值,按下正向起动按钮 SB1,观察 并记录电动机的转向和接触器的运行情况;

(3) 等待时间到,观察电机的转向,各触电点的吸合情况;

(4) 按停止按钮 SB3, 观察电动机的转向和接触器运行情况;

(5) 实验完毕,按控制屏停止按钮,切断三相交流电源。

五、思考题

1. 在电动机正、反转控制线路中,为什么必须保证两个接触器

不能同时工作?采用哪些措施可解决此问题,这些方法有何利弊, 最佳方案是什么?

2. 试分析图 2-4、2-5、2-6、2-7 各有什么特点?并画出运行 原理流程图。

3. 图 2-4、2-5 虽然也能实现电动机正反转直接控制,但容易 产生什么故障,为什么?

4. 接触器和按钮的联锁触点在继电接触控制中起到什么作用?

实验三 三相异步电机 Y-△换接起动控制

一、实验目的

1. 了解时间继电器的使用方法及在控制系统中的应用;

2. 熟悉异步电动机 Y-△降压起动控制的运行情况和操作方法;

3. 学会设计常用继电接触控制方法。

二、原理说明

按时间原则控制电路的特点是各个动作之间有一定的时间间 隔,使用的元件主要是时间继电器。时间继电器是一种延时动作的 继电器,它从接受信号(如线圈带电)到执行动作(如触点动作) 具有一定的时间间隔。此时间间隔可按需要预先整定,以协调和控 制生产机械的各种动作。时间继电器的种类通常有电磁式、电动式、 空气式和电子式等。其基本功能可分为两类,即通电延时式和断电 延时式,有的还带有瞬时动作式的触头。时间继电器的延时时间通 常可在 0.4s~80s 范围内调节。

三、实验设备

序号	名称	数量
1	三相交流电源	1
2	三相鼠笼式异步电动机(D21)	1
3	交流接触器	2

4	时间继电器	1
5	按钮	1
6	热继电器	1
7	万用电表	1
8	切换开关	1

四、实验内容

1. 手动控制 Y-△降压起动控制线路

按图 2-8 线路接线,经检查无误后, 方可进行通电操作。

(1) 开关 Q2 合向上方,使电动机为△
接法。接通三相交流电源,电动机在△接 图 2-8 手动控制 Y-△降压起动法直接起动。

(2) 按控制屏停止按钮,切断三相交流电源,待电动机停稳后,开关 Q2 合向下方,使电动机为 Y 接法。

(3) 按控制屏启动按钮,接通三相交流电源,电动机在Y接法 直接起动。

(4) 按控制屏停止按钮, 切断三相交流电源。

(5)待电动机停稳后,操作开关Q2,使电动机作Y-△降压启动。

a. 先将Q2合向下方,使电动机Y接,按控制屏启动按钮。

b. 待电动机接近正常运转时,将Q2合向上方△运行位置,使

电动机正常运行。

实验完毕后,按控制屏停止按钮,切断实验线路电源。

2. 接触器控制 Y-△降压起动线路

按图 2-9 线路接 线,经检查无误后,方 可进行通电操作。

当接触器 KM1、KM2
主触头闭合, KM3 主触头
断开时,电动机三相定
子绕组作 Y 连接;而当
接触器 KM1 和 KM3 主触

接触器 KM1 和 KM3 主触 图 2-9 接触器控制 Y-△降压起动线路 头闭合, KM2 主触头断开时, 电动机三相定子绕组作△连接。

(1) 启动控制屏,合上Q1,接通220V交流电源。

(2) 按下 SB2, 电动机作 Y 接法起动,注意观察起动时,电流表最大读数 I_{Y 起动}=_____A。

(3) 按下 SB1, 使电机为△接法正常运行, 注意观察△运行时, 电流表电流为 I_{A运行}=____A。

(4) 按 SB3 停止后,先按下 SB1,再同时按下启动按钮 SB2, 观察电机在△接法直接起动时电流表最大读数 I△_{&B0}=____安。

(5) 比较 I_{Y 起动}/I_{Δ 起动}=____, 结果说明什么问题?

(6) 实验完毕, 按控制屏停止按钮, 切断实验线路电源。

3. 请设计时间继电器控制鼠笼式电动机 Y-△降压自动换接起动的控制线路。具体要求如下:

(1)实验用时间继电器为通电延时式时间继电器,主回路接线 同图 2-9,因此,所设计的控制线路若能先使 KM1 和 KM2 得电闭合, 后经一定时间的延时,使 KM2 失电断开,而后使 KM3 得电闭合,则 电动机就能实现降压起动后自动转换到正常工作运转。

(2)接触器 KM3 与 KM2 通过动断触头实现电气互锁,保证 KM3 与 KM2 不会同时得电,以防止三相电源的短路事故发生。

(3)保证在按下按钮后,使KM2 先得电,依靠时间继电器KT 延时动合触头和延时动断作用,再保证 KM2 先断,而后再自动接通KM3,避免换接时电源可能发生的短路事故。

(4)线路正常运行(△接)时,接触器 KM2 及时间继电器 KT 均 处断电状态。

试画出实验控制线路图并接线,实验过程中应注意以下几点:

(1)在不通电的情况下,用万用电表Ω档检查线路连接是否正确,特别注意 KM2 与 KM3 两个互锁触头是否正确接入。

(2) 按起动按钮 SB1,观察电动机的整个起动过程及各继电器的动作情况,记录 Y-△换接所需时间。

(3) 按停止按钮 SB2, 观察电机及各继电器的动作情况。

(4) 调整时间继电器的整定时间,观察接触器 KM2、KM3 的动 作时间是否相应地改变。

五、实验注意事项

1. 注意安全,严禁带电操作。

 只有在断电的情况下,方可用万用电表Ω档来检查线路的 接线正确与否。

六、思考题

1. 采用 Y-△降压起动对鼠笼电动机有何要求。

如果要用一只断电延时式时间继电器来设计异步电动机的
 Y-△降压起动控制线路,试问三个接触器的动作次序应作如何改动,控制回路又应如何设计?

2. 控制回路中的一对互锁触头有何作用?若取消这对触头对
 Y-△降压换接起动有何影响,可能会出现什么后果?

4. 降压起动自动控制线路与手动控制线路相比较有哪些优点?

实验五 变频器控制异步电机运行

注意: 要求实验前阅读变频器说明书

一、实验目的

1. 通过对西门子 MM 420 变频器的学习,掌握变频器工作 原理和参数设置;

通过实验实现自锁电路对变频器供电,进一步加深自锁电路的理解和变频器知识的掌握。

二、实验设备

序号	名称	数量
1	DT01电源主控制屏	1
2	三相鼠笼式异步电动机(D21)	1
3	变频器实验挂箱	1
4	交流电压表	1

三、变频器面板操作

变频器功能参数设置与操作功能说明见下表。

1、 基本操作面板(BOP)功能说明

显示/按钮	功能	功能的说明
» ۵000 م	状态显 示	LCD 显示变频器当前的设定值。
	起动变 频器	按此键起动变频器。缺省值运行时此键是被封锁的。 为了使此键的操应设定P0700=1。
	停止变 频器	OFF1: 按此键, 变频器将按选定的斜坡下降速率减速 停车.缺省值运行时此键被封锁; 为了允许此键操作, 应设定P0700=1。OFF2: 按此键两次(或一次,但时 间较长)电动机将在惯性作用下自由停车此功能总是 "使能"的。
\bigcirc	改变电 动机的 转动方 向	按此键可以改变电动机的转动方向。电动机的反向用 负号(一)表示或用闪烁的小数点表示。缺省值运行 时此键是被封锁的,为了使此键的操作有效,应设定 P0700=1。
jog	电动机 点动	在变频器无输出的情况下按此键,将使电动机起动, 并按预设定的点动频率运行。释放此键时,变频器停 车。如果变频器/电动机正在运行,按此键将不起作用。
Fn	功能	此键用于浏览辅助信息。 变频器运行过程中,在显示任何一个参数时按下此键 并保持不动2 秒钟,将显示以下参数值(在变频器运 行中,从任何一个参数开始): 1. 直流回路电压(用d 表示-单位:V) 2. 输出电流(A) 3. 输出频率(Hz) 4. 输出电压(用o 表示-单位:V)。 5. 由P0005 选定的数值(如果P0005 选择显示上述 参数中的任何一个(34,或5),这里将不再显示)。 连续多次按下此键,将轮流显示以上参数。 跳转功能 在显示任何一个参数(rXXXX 或PXXXX)时短时间 按下此键,将立即跳转到r0000,如果需要的话,您可 以接着修改其它的参数。跳转到r0000 后,按此键将 返回原来的显示点。
P	访问参 数	按此键即可访问参数。

\bigcirc	增加数 值	按此键即可增加面板上显示的参数数值。	
\odot	减少数 值	按此键即可减少面板上显示的参数数值.	

2、 用基本操作面板更改参数的数值

改变参数 P0004 a)

操作步骤

0

З

b) 改变下标参数 P0719

操住	乍步骤		显示的结果
1	按向	访问参数	[~] ~0000
2	按	直到显示出 P0719	P0719
3	按下	进入参数数值访问级	10000
4	按下	显示当前的设定值	0
5	按	或 🕤 选择运行所需要的最大频率	ř. a
6	按る	确认并存储 P0719 的设定值	P0719
7	按	直到显示出 r000	~ 0000
8	按问	返回标准的变频器显示(有用户定义)	82

为了快速修改参数的数值,可以一个个地单独修改显示出的 每个数字,操作步骤如下:

1) 按 🖸 (功能键),最右边的一个数字闪烁;

按 ❷/ ❷ 修改这位数字的数值; 2)

- 3) 再按 🖻 (功能键),相邻的下一个数字闪烁;
- 4) 执行2至4步,直到显示出所要求的数值;
- 5) 按 🕞,退出参数数值的访问级。

3、 变频器快速调试

为了把变频器的全部参数复位为工厂缺省设定值,应按照下 面的数值设定参数:

1) 设定 P0010=30

2) 设定 P0970=1

完成复位过程至少要3分钟。

P0010 的参数过滤功能和 P0003 选择用户访问级别的功能在 调试时是十分重要的。由此可以选定一组允许进行快速调试的参 数。电动机的设定参数和斜坡函数的设定参数都包括在内。在快 速调试的各个步骤都完成以后,应选定 P3900,如果它置为 1, 将执行必要的电动机计算,并使其它所有参数(P0010=1 不包括 在内)恢复为缺省设置值。只有在快速调试方式下才进行这一操 作,快速调试流程如下图:

四、实验内容

1、通过自锁电路实现对变频器的供电

实验接线图 2-11,其中可调电位器 4.7K 的 2 端与 AIN-已在 内部连接好,确保接线无误(否则会损坏变频器)后,启动电源 进行实验:

图 2-11 变频器控制异步电机运行控制线路

(1) 合上开关Q1, 接通三相交流 220V 电源;

(2) 按下启动按钮 SB1, 松手后观察变频器供电情况;

(3) 按下停止按钮 SB2, 松手后观察变频器供电情况。

2、通过操作面板(BOP)控制电机启动/停止、正转/反转

运用操作面板改变电机的运行频率和加减速时间。设置参数功

能表如下:

序号	变频器参数	出厂值	设定值	功能说明
1	P0304	230	230	电动机的额定电压(230V)
2	P0305	1.3	1.3	电动机的额定电流(1.3A)
3	P0307	0.18	0.18	电动机的额定功率(180W)
4	P0310	50.00	50.00	电动机的额定频率(50Hz)
5	P0311	0	1395	电动机的额定转速(1395 r/min)
6	P1000	2	1	用操作面板 (BOP) 控制频率的升降
7	P1080	0	0	电动机的最小频率(0Hz)
8	P1082	50	50.00	电动机的最大频率(50Hz)
9	P1120	10	10	斜坡上升时间(10S)
10	P1121	10	10	斜坡下降时间(10S)
11	P0700	2	1	BOP(键盘)设置

注: (1) 设置参数前先将变频器参数复位为工厂的缺省设定值

(2) 设定 P0003=2 允许访问扩展参数

(3) 设定电机参数时先设定 P0010=1(快速调试),电机参数设置完成设 定 P0010=0(准备)

具体操作步骤:

1) 按照变频器外部接线图完成变频器的接线,认真检查,确保

正确无误;

- 2) 打开电源开关,按照参数功能表正确设置变频器参数;
- 3) 按下操作面板按钮" ①",起动变频器;
- 4) 按下操作面板按钮" 🙆 🞯, 增加、减小变频器输出频率;

- 5) 按下操作面板按钮" 🙆",改变电机的运转方向;
- 6) 按下操作面板按钮" **0**",停止变频器。

3、外部端子点动控制

通过外部端子控制电机启动/停止、正转/反转,按下按钮"S1" 电机正转启动,松开按钮"S1"电机停止;按下按钮"S2"电机 反转,松开按钮"S2"电机停止。运用操作面板改变电机启动的 点动运行频率和加减速时间。参数功能表(电机设置的参数不变) 如下:

序号	变频器参数	出厂值	设定值	功能说明
1	P1000	2	1	用操作面板(BOP)控制频率的升降
2	P1080	0	0	电动机的最小频率(0Hz)
3	P1082	50	50.00	电动机的最大频率(50Hz)
4	P1120	10	10	斜坡上升时间(10S)
5	P1121	10	10	斜坡下降时间(10S)
6	P0700	2	2	选择命令源(由端子排输入)
7	P0701	1	10	正向点动
8	P0702	12	11	反向点动
9	P1058	5.00	30	正向点动频率(30Hz)
10	P1059	5.00	20	反向点动频率(20Hz)
11	P1060	10.00	10	点动斜坡上升时间(10S)
12	P1061	10.00	5	点动斜坡下降时间(5S)

注: (1) 设置参数前先将变频器参数复位为工厂的缺省设定值

(2) 设定 P0003=2 允许访问扩展参数

(3) 设定电机参数时先设定 P0010=1(快速调试),电机参数设置完成 设定 P0010=0(准备)

具体操作步骤:

1) 按照变频器外部接线图完成变频器的接线,认真检查,确保

正确无误;

- 2) 打开电源开关,按照参数功能表正确设置变频器参数;
- 3) 按下按钮 "S1", 观察并记录电机的运转情况;
- 4) 松开按钮 "S1"待电机停止运行后,按下按钮 "S2",观察 并记录电机的运转情况;
- 5) 松开按钮 "S2", 观察并记录电机的运转情况;
- 6) 改变 P1058、P1059 的值,重复 3、4、5,观察电机运转状态有什么变化,改变 P1060、P1061 的值,重复 3、4、
 5,观察电机运转状态有什么变化。

4、外部电位器控制变频器调速

需实现的功能:

- 1) 通过外部端子 S1 控制电机启动/停止;
- 2) 通过调节电位器改变输入电压来控制变频器的频率。

参数功能表(电机设置的参数不变)如下:

序号	变频器参数	出厂值	设定值	功能说明
1	P1000	2	2	模拟输入
2	P0700	2	2	选择命令源(由端子排输入)
3	P0701	1	1	ON/OFF(接通正转/停车命令1)
	注: (1) 设置参	数前先将	变频器参	数复位为工厂的缺省设定值;
	(2) 设定 F	20003=2	允许访问打	广展参数:

(3) 设定电机参数时先设定 P0010=1(快速调试),电机参数设置完成设定 P0010=0(准备)。

操作步骤:

1) 按照变频器外部接线图完成变频器的接线,认真检查,确

保正确无误;

- 2) 打开电源开关,按照参数功能表正确设置变频器参数;
- 3) 打开开关 "S1", 起动变频器;
- 4) 调节可调电位器旋钮,观察并记录电机的运转情况;
- 5) 关闭开关"S1",停止变频器。

在实验过程中,同时实现以下功能:

- 1) 电机运行时,试显示变频器的输出电压,电流以及频率;
- 2) 试调节电机加减速时间;
- 3) 电机运行时, 使变频器输出继电器闭合, 并测量。

五、思考讨论题

1. 分析变频器供电电路的功能和要求;

讨论变频器可以实现的控制模式,电机运行方式以及变频器的具体设置。

图 2-12 西门子 MM 420 变频器系统框图